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Abstract
	 This paper proposes a double bootstrap-t one-sided confidence interval for population variance of 
skewed distributions. The upper endpoint and lower endpoint confidence intervals are studied. The one-
sided confidence intervals based on the chi-square statistic, bootstrap-t method and double bootstrap-t 
method are compared via Monte Carlo simulations. The simulation results indicated that the coverage 
probabilities of bootstrap-t confidence interval can be increased by using double bootstrap resampling. The 
upper endpoint confidence interval using double bootstrap-t method predominates the other methods with 
respect to the coverage probability criteria. The performance of the proposed one-sided confidence interval 
is illustrated with an empirical example.
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Introduction
A confidence interval (CI) for a population 

parameter gives a bound computed from sample 
data containing the true value of the parameter with 
a specified confidence level. Confidence interval 
plays a significant role in statistical inference 
regarding the parameter. For confidence interval 
for population variance, well-known existing 
methods are based upon the chi-square statistic 
which is introduced by Pearson (1900). Based on 
the chi-square statistic, the upper endpoint and 
lower endpoint (1 )100%α−  confidence intervals 
for 2σ  are (Cojbasic and Loncar, 2011) 

	  	  	
		                                                    (1)

and                                                                       (2)

where                                              2
1,n αχ −     and                

2
1,1n αχ − −  are the ( )100thα  and (1 )100thα−  

percentiles of the central chi-square distribution 

with 1n −  degrees of freedom. It is well-known  
that these upper endpoint and lower endpoint 
confidence intervals for 2σ  are constructed under 
the normal distribution. However, the underlying 
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distribution is non-normal in some situations. 
Hence, it may be a skewed distribution. To deal 
with these situations, many researchers have 
proposed confidence interval for 2σ  of skewed 
distributions. For example, Bonett (2006) provided 
an approximate confidence interval for standard 
deviation and his proposed confidence interval 
is nearly exact under the normal distribution 
for small samples, and under the non-normal 
distributions for moderate samples. Cojbasic and 
Tomovic (2007) presented confidence intervals 
for the population variance and the difference 
in variances of two populations based on the 
ordinary t-statistics combined with the bootstrap 
method. In addition, Cojbasic and Loncar (2011) 
studied the coverage accuracy of one-sided 
bootstrap-t confidence intervals for the population 
variances combined with Hall’s and Johnson’s 
transformation. In some cases, we found that the 
above mentioned confidence intervals provided 
the coverage probability less than the nominal 
confidence interval. In this paper, we show 
that a slight modification of the usual bootstrap 
confidence interval can help to improve the 
accuracy of coverage probability. One approach of 
increasing the coverage probability of confidence 
interval is to use the double bootstrap described 
by Nankervis (2002, 2005), which can be thought 
of as bootstrapping the bootstrap (Scherer and 
Martin, 2005). Namely, the error in the coverage 
probability of bootstrap confidence intervals can be 
reduced by the use of double bootstrap confidence 
intervals (Nankervis, 2002).
	 The structure of this paper is as follows. 
The next section presents the bootstrap-t one-
sided confidence interval for the variance, and 
the third section provides the details of the double 
bootstrap-t one-sided confidence interval for the 
variance. The fourth section presents the Monte 
Carlo simulation results. An empirical example is 

given in the fifth section, and the conclusions are in 
the sixth section. 

Bootstrap-t One-Sided Confidence Interval for 
the Variance
	 The bootstrap introduced by Efron 
(1979) is a computer-based and resampling 
method for assigning measures of accuracy 
to statistical estimates (Efron and Tibshirani, 
1993). For a sequence of independent and 
identically distributed (i.i.d.) random variables, 
the bootstrap procedure can be defined as follows 
(Tosasukul et al., 2009). Let 1 2, ,..., nX X X  be 
independently and identically distributed random 
variables from some distribution with mean 
µ  and variance 2.σ  Let the random variables 

*{ ,1 }jX j m≤ ≤  be the result from sampling m  
times from the population with replacement from 
the n  observations 1 2, ,..., .nX X X  The random 
variables *{ ,1 }jX j m≤ ≤  are called the bootstrap 
samples from original data 1 2, ,..., .nX X X  Let 
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is well-known that the pivotal quantity 2 2( 1) /n S σ−  
has central chi-square distribution with 1n −  
degrees of freedom (Bonett, 2006). A confidence 
interval for population variance can be constructed 
using aforementioned pivotal quantity. For large 
sample sizes, central chi-square distribution with 

1n −  degrees of freedom can be approximated by 
normal distribution with mean 1n −  and variance 
2( 1)n −  (Cojbasic and Tomovic, 2007). Therefore, 
the distribution of the standardized variable
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confidence interval for 2σ  is calculated based on 
the statistic

		
			     (4)

where  2var( )S  is a consistent estimator of the 
variance of 2.S  Casella and Berger (2001, pp.257) 
have shown the estimator of  2var( )S  for non-
normal distribution such that

                                                  and  

After re-sampling B  bootstrap samples, in 
each bootstrap sample we compute the value of the 
following statistic 
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where *2S  is a bootstrap replication of 

statistic  2 ,S   *2 * *4
4

1 3var( ) ˆ
1

nS S
n n

µ − = − −   and 

* * * 4
4

1

1ˆ ( ) .
m

i
i

X X
m

µ
=

= −∑  The upper endpoint and 

lower endpoint (1 )100%α−  bootstrap-t confidence 

intervals for 2σ  are 
			 

	                                                                 (6)

and	  			            (7)

where *
( )t̂ α  and *

(1 )t̂ α−  are the ( )100thα  and 

(1 )100thα−  percentiles of *T  shown in Eq. (5).
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Double Bootstrap-t One-Sided Confidence 
Interval for the Variance
	 The details of double bootstrap-t one-sided 
confidence interval are as follows. For each of 
B  bootstrap replications, the first-level bootstrap 
samples *{ ,1 }jX j m≤ ≤  are first drawn from the 
original data. Next, the second-level bootstrap 
samples **{ ,1 }jX j m≤ ≤  are drawn from the first-
level bootstrap samples. The statistic **  based on 
the second-level bootstrap samples is computed as 
follows

        
        (8)

where **2S  is a standard deviation of the 

second-level bootstrap samples **{ },jX  
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endpoint and lower endpoint (1 )100%α−  double 

bootstrap-t confidence intervals for 2σ  are
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where **
( )t̂ α  and **

(1 )t̂ α−  are the ( )100thα  and 

(1 )100thα−  percentiles of **  given in Eq. (8).

Monte Carlo Simulation Results
	 The following Monte Carlo experiment 
compares the performance of one-sided confidence 
intervals for the variance of skewed distributions. 
The simulation study was conducted using the open 
source statistical package R (Ihaka and Gentleman 
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1996) to estimate the coverage probability of one-
sided confidence interval. We chose to use some 
of the probability density functions of Cojbasic 
and Loncar (2011) in the simulation study. For 
each probability density function, we generated 
ten thousand random samples from Weibull, 
Exponential and Lognormal distribution and used 
2,000 bootstrap samples. The different sample 
sizes ( n = 10, 20, 50, 100) are considered.    

Table 1 illustrates the results of the 
estimated coverage probabilities of 95% lower 
endpoint confidence intervals while the estimated 
coverage probabilities of 95% upper endpoint 
confidence intervals are shown in Table 2. We 
begin with the results for the lower endpoint 
confidence intervals (Table 1). The chi-square 
method provides estimated coverage probabilities 
of the lower endpoint confidence intervals close 
to the nominal confidence level 0.95 when the 
coefficients of skewness are equal to 0 and 0.62. 
For example, when the underlying distribution is 
Weibull distribution with shape parameter 2, the 
estimated coverage probabilities of 95% lower 
endpoint confidence interval attained by the chi-
square method are 0.9446, 0.9446, 0.9398 and 
0.9349 for 10, 20, 50n =  and 100, respectively. 
In addition, the bootstrap-t method provides 
the estimated coverage probabilities close to 
the nominal confidence level 0.95 when the 
coefficients of skewness are equal to 0.62 and 2. 
The estimated coverage probabilities of lower 
endpoint confidence interval by using double 
bootstrap-t method are close to one as skewness 
coefficient gets larger.

Next, the upper endpoint confidence 
intervals are considered (Table 2). The estimated 
coverage probabilities of upper endpoint 
confidence interval by using both chi-square and 
bootstrap-t method get reasonably close to the 
nominal confidence level 0.95 for low skewness is 

low (coefficients of skewness are equal to 0 and 
0.62). Furthermore, the double bootstrap-t method 
provides the estimated coverage probabilities more 
than those of other methods. However, all methods 
have poor estimated coverage probabilities of 
upper endpoint confidence interval for medium 
and high skewness (coefficients of skewness 
are equal to 6.18 and 23.73). For instance, the 
estimated coverage probabilities of 95% upper 
endpoint confidence interval for Lognormal with 

2 2σ =  and 20n =  are 0.2872, 0.6047 and 0.7687 
by chi-square, bootstrap-t and double bootstrap-t 
methods, respectively. Additionally, all estimated 
coverage probabilities tend to increase as sample 
size gets larger. The above results indicate that the 
upper endpoint confidence interval using double 
bootstrap-t method dominates the other approaches 
for almost all situations except low skewness.      

An Empirical Example
	 To illustrate an empirical example of one-
sided confidence intervals for population variance 
of skewed distributions that have been presented 
within the previous section, we have used the real 
environmental data. Sulfur dioxide (SO2) contents 
of air in micrograms per cubic meter for forty 
U.S. cities were collected from U.S. government 
publications. The data were obtained from 1969 
to 1971 (Source: http://lib.stat.cmu.edu/DASL). 
The histogram, density plot, box plot and normal 
QQ plot of SO2 contents are displayed in Figure 
1. It indicates that the distribution of SO2 contents 
was positively skewed. The 95% lower and upper 
endpoint confidence intervals for the variance 
are constructed. As shown in Table 3, the lower 
endpoint confidence intervals computed via double 
bootstrap-t method provides the widest length  
as compared to those obtained from chi-square  
and bootstrap-t method. It is corresponding 
with the Monte Carlo studies that the double  
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Table 1	 The estimated coverage probabilities of 95% lower endpoint confidence interval for the variance 
of standard normal distribution and skewed distributions.

Distribution
Skewness 
coefficient

Sample 
size

Method

Chi-square Bootstrap-t
Double 

bootstrap-t

Standard normal 0 10 0.9506 0.8588 0.8965

20 0.9490 0.8942 0.9414

50 0.9511 0.9203 0.9687

100 0.9508 0.9328 0.9789

Weibull with shape 
parameter 2

0.62 10 0.9446 0.9455 0.9755

20 0.9446 0.9541 0.9858

50 0.9398 0.9512 0.9899

100 0.9349 0.9440 0.9900

Exponential with 
mean 1

2 10 0.8805 0.9720 0.9877

20 0.8608 0.9777 0.9969

50 0.8416 0.9670 0.9975

100 0.8253 0.9610 0.9950

Lognormal with 2 1σ =
6.18 10 0.8918 0.9964 0.9991

20 0.8593 0.9953 0.9997

50 0.8200 0.9900 0.9998

100 0.7909 0.9852 0.9998

Lognormal with 2 2σ =
23.73 10 0.9221 0.9990 0.9994

20 0.8959 0.9991 1.0000

50 0.8642 0.9970 1.0000

100 0.8327 0.9945 0.9999
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Table 2 	 The estimated coverage probabilities of 95% upper endpoint confidence interval for the variance 
of standard normal distribution and skewed distributions.

Distribution
Skewness 
coefficient

Sample 
size

Method

Chi-square Bootstrap-t
Double 

bootstrap-t

Standard normal 0 10 0.9460 0.9467 0.9940

20 0.9502 0.9503 0.9917

50 0.9476 0.9466 0.9910

100 0.9550 0.9561 0.9914

Weibull with shape 
parameter 2

0.62 10 0.9492 0.9350 0.9911

20 0.9455 0.9274 0.9837

50 0.9438 0.9344 0.9829

100 0.9385 0.9404 0.9837

Exponential with 
mean 1

2 10 0.7981 0.8259 0.9398

20 0.7803 0.8505 0.9324

50 0.7793 0.8939 0.9577

100 0.7841 0.9118 0.9677

Lognormal with 2 1σ =
6.18 10 0.5340 0.7038 0.8432

20 0.4946 0.7233 0.8439

50 0.4973 0.7728 0.8711

100 0.5048 0.7977 0.8923

Lognormal with 2 2σ =
23.73 10 0.2960 0.5979 0.7410

20 0.2872 0.6047 0.7687

50 0.2888 0.6395 0.7792

100 0.3029 0.6727 0.7928

Conclusions
	 A double bootstrap-t one-sided confidence 
interval for population variance of skewed 
distributions has proposed in this paper. The study 
was carried out to compare the performance of a 
proposed confidence interval with the existing 
confidence intervals. Three one-sided confidence 
intervals are considered: the one-sided confidence 
interval based on chi-square statistic, the bootstrap-t 

one-sided confidence interval and the double 
bootstrap-t one-sided confidence interval. Based 
on simulation studies, the double bootstrap-t one-
sided confidence interval provides good coverage 
probability for the upper endpoint confidence 
interval. On the other hand, the double bootstrap 
resampling can also improve the accuracy of the 
upper endpoint confidence interval for population 
variance of skewed distributions. The behind 



Silpakorn U Science & Tech J Vol.7(2), 2013W. Panichkitkosolkul

15

bootstrap-t method provides the estimated  
coverage probabilities more than those of other 
methods. Therefore, the double bootstrap-t method 
is not suitable for this case. However, the length of 

the upper endpoint confidence interval computed 
by double bootstrap-t method is shorter than other 
confidence intervals.    

Figure 1	 (a) Histogram (b) Density plot (c) Box plot and (d) Normal QQ plot of Sulfur dioxide(SO2) 
contents of air for forty-one US cities.

Method
Lower endpoint

confidence interval
Upper endpoint

confidence interval

Chi-square 	 [ 0 , 831.33 ] [ 395.24 , ∞  ]

Bootstrap-t 	 [ 0 , 1396.97 ] [ 298.09 , ∞  ]

Double bootstrap-t 	 [ 0 , 1802.90 ] [ 204.10 , ∞  ]

Table 3	 The 95% lower and upper endpoint confidence intervals for the variance of SO2 contents.
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reason is that the resulting double bootstrap 
confidence intervals have been shown to have  
a smaller order of error. For example, Hall  
(1986) has shown that, in general, the coverage  
rate of a 100(1-2α)% equal-tailed bootstrap 
confidence interval is corrected from 1-2α + O(n-1)  
to 1-2α + O(n-2) for a double bootstrap confidence 
interval. In addition, the coverage probability of 
double bootstrap-t lower endpoint confidence 
interval does not achieve exactly the nominal 
confidence level.
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